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FIG. 7

proc INTEGRATE-RAY (x, ¥)

16
17
18

float depth = D {x, v}
float (a, B, v1) = TO-EPIPOLAR(x, ¥, depth)
int node =1 // start at the root
int2 (v_, v+) = RANGE(node)
floatd out = (0,0,0,0)
do
if min[node, o] € B <max{node, o]
node = node * 2 // recurse to left child
else // fully lit or fully shadowed
if B <min{node, u] // fully lit node
out = out + Uglmin{yy, v+ D1 - Tsoml[ -]
end if
node = node + 1 // advance to next node
while node is even // while node is a left-child
node = node / 2 // go to parent
end while
end if
(v., v+)} = RANGE(node)

19 while node #1 && v, >v.  // while ray extends into node
20 return dot(B[f], out)

FIG. 8
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RENDERING IMAGES WITH VOLUMETRIC
SHADOWS USING RECTIFIED HEIGHT
MAPS FOR INDEPENDENCE IN
PROCESSING CAMERA RAYS

BACKGROUND

Computer-generated imagery typically involves using
software and/or hardware to generate one or more images
from a geometric model. A geometric model defines objects,
light sources, and other elements of a virtual scene and a
rendering system or other computer/software/hardware sys-
tem will read in the geometric model and determine what
colors are needed in what portions of the image. A renderer
will generate a two-dimensional (“2D”) array of pixel color
values that collectively result in the desired image or images.

For a simple geometric model, such as a cube in a vacuum
with a single light source, a simple computer program run-
ning on most computer hardware could render the corre-
sponding image in a reasonable amount of time without much
optimization effort. However, there are many needs—in the
entertainment industry and beyond—for methods and appa-
ratus that can efficiently process complex interactions of vir-
tual objects to generate imagery in constrained timeframes
where the images might need to convey realistic light inter-
actions, such as light interacting with a participating medium.
In some cases, the rendering is needed in real-time, i.e.,
situations where the geometric model is not available well in
advance (such as when the geometric model depends on
unpredictable actions taken by a user) and yet the image needs
to be generated right then. This places severe strains on com-
puter processing hardware and software.

In real world scenes, moisture or dust in the air often results
in visible volumetric shadows and beams of light known as
“god rays” or “crepuscular rays.” Rendering these light scat-
tering effects in an image of a virtual space is often essential
for producing compelling virtual scenes. Simulating all scat-
tering events is prohibitively expensive, especially for real-
time applications, and approximations are used instead.

The “single-scattering” model [ Blinn1982] greatly simpli-
fies rendering, while still producing realistic effects. In this
model, a light ray is modeled as travelling from a source, and
may get scattered into the eye at any point in the participating
medium, while attenuating along the path. This simplification
has allowed participating media with shadows to make its
way into modern computer games. Typically, the scattering
medium is assumed to be homogeneously distributed through
the scene.

The simplest method for rendering single scattering is ray
marching. In ray marching, the rendering system calculates
pixel values by considering a ray cast from the camera eye
through each pixel and approximating a scattering integral by
“marching” along that ray and checking if each sample is litor
shadowed using a shadow map. To generate high-quality
images, however, many samples are needed. Several methods
for accelerating this process have been published in the last
couple of years. [Baran2010] shows some examples.

There have been several papers written on solving the
single-scattering integral (semi)-analytically [Sun2005;
Pegoraro2009; Pegoraro2010], but they necessarily ignore
shadowing, which is often required for realism. Other meth-
ods, such as volumetric photon mapping [Jensenl1998;
Jarosz2008] and line space gathering [Sun2010] compute
solutions to more difficult scattering problems, such as volu-
metric caustics or multiple scattering, but even with graphical
processing unit (“GPU”) acceleration they are far from real-
time on complex scenes.

10

20

25

30

35

40

45

50

55

60

65

2

Max [Max1986] described how to compute the single-
scattering integral by finding the lit segments on each ray
using shadow volumes intersected with epipolar slices. The
integral on each lit segment is computed analytically. Epipo-
lar sampling [Engelhardt2010] speeds up ray marching by
computing it only at depth discontinuities along image-space
epipolar lines. The scattered radiance at all other points is
interpolated along these lines, but this can cause temporally-
varying artifacts, as discussed in prior work [Baran2010].
Wyman and Ramsey [Wyman2008] use shadow volumes to
cull ray marching in unlit areas. Hu et al. [Hu2010] recently
presented an algorithm for interactive volumetric caustics,
using Wyman and Ramsey’s [ Wyman2008] method for single
scattering. Though this method works well for simple occlud-
ers, it becomes slow in the presence of complex visibility
boundaries. Several methods [Dobashi2000; Dobashi2002]
compute the scattering integral by constructing slices at dif-
ferent depths, rendering the scattering at these slices, and
using alpha-blending to combine them. Imagire and col-
leagues [Imagire2007] use a hybrid approach that incorpo-
rates both slices and ray marching.

The algorithm of Billeter et al. [Billiter2010] is similar to
that of Max [Max1986], but generates the shadow volume
from the shadow map and uses the GPU rasterizer to compute
the lit segments. This latter method is exact up to the shadow
map resolution. It is very fast for low-resolution shadow
maps, but slows down significantly for higher resolution
shadow maps (such as 40967 resolution) and the number of
vertices in the shadow volume overwhelms the pipeline.
Unfortunately, large and complex scenes of interest require
such high-resolution shadow maps to avoid aliasing.

For high-resolution shadow maps, Billeter et al. perform
online decimation of the shadow volume, but this is expensive
and has their outer loop over the shadow volume elements,
which can require sending a large number of vertices to a
GPU. The algorithm of Baran et al. [Baran2010] (referred to
herein as “incremental integration”) uses epipolar rectifica-
tion to reduce scattering integration to partial sums on a
rectilinear grid and uses a partial sum tree to accelerate this
computation. While this method has good worst-case upper
bounds and is very fast on a CPU, it requires an incremental
traversal of multiple camera rays in a particular order, making
it difficult to utilize the full parallelism provided by a GPU.
Implementing their method on a GPU also requires using a
GPGPU API, such as CUDA or OpenCL, but that constrains
the hardware that can be used for rendering

Min-max mipmaps have been used for accelerating soft
shadows [Guennebaud2006], global illumination
[Nichols2009], as well as ray tracing geometry images
[Carr2006] and height fields [Mastin1987; Musgravel989;
Tevs2008], but these are two-dimensional (“2D”) mipmaps
and are not all that simple and efficient.

Thus, even with those techniques, there was room for
improvement.
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SUMMARY

A computer-implemented method for rendering a scene
from a geometric model of elements in the scene, lighting and
a participating volumetric medium, is provided wherein the
volumetric medium and lighting of such volumetric medium
and scene is represented by electronically readable represen-
tative data, and rendering corresponds to generating pixel
values from an image representing a view of the scene from a
camera viewpoint, the method comprising at least generating
a shadow map representing visibility from a light source in
the scene, converting the shadow map using epipolar rectifi-
cation to form a rectified shadow map (or generating the
rectified shadow map directly), generating an approximation
to visibility terms in a scattering integral, then for each of a
plurality of rows in the rectified shadow map, computinga 1D
min-max mipmap or other acceleration data structure that can
be used in parallel for multiple camera rays in a single epi-
polar slice and traversing that mipmap or data structure to find
lit segments that are used for accumulating values for the
scattering integral for specific camera rays, and generating
rendered pixel values that take into account accumulated
values for the scattering integral for the plurality of camera
rays.

The scattering near an epipole of the rectified shadow map
might be done using brute force ray marching when the epi-
poleis on or near a view plane region in the scene correspond-
ing to a screen corresponding to the image being rendered.
The process can also include a depth map representing vis-
ibility from the camera viewpoint.

In some embodiments, the process is implemented using a
graphics processing unit (“GPU”) and formulating the pro-
cess as multiple parallel and independent operations allows
for faster rendering, which is useful for interactive and real-
time applications.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates an example scene rendered using tech-
niques described herein.

FIG. 2 illustrates an example of the acceleration data struc-
ture usable in rendering; FIG. 2A illustrates a shadow map in
a scene and FIG. 2B illustrates a corresponding rectified
shadow map, and a corresponding 1D min-max mipmap.

FIG. 3 illustrates an example epipolar coordinate system
for a directional light (FIG. 3A) and a point light (FIG. 3B).

FIG. 4 illustrates an example shadow map with an epipolar
coordinate system overlaid thereon.

FIG. 5 illustrates an example rectified shadow map corre-
sponding to the shadow map of FIG. 4.

FIG. 6 illustrates a min-max mipmayp in specific detail and
an example camera ray. This corresponds to the shadow map
of FIG. 2B, with the min and max values for nodes provided
with each node.

FIG. 7 illustrates a process of traversing the min-max mip-
map for an example camera ray shown in FIG. 6.

FIG. 8 is pseudocode illustrating a process of traversal of a
min-max mipmap.
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FIG. 9 is a block diagram of example hardware used to
implement an embodiment of a renderer according aspects of
the present invention.

DETAILED DESCRIPTION

Embodiments of the present invention are described
herein, in many places, as a set of computations. It should be
understood that these computations are not performable
manually, but are performed by an appropriately programmed
computer, computing device, electronic device, or the like,
that might be a general purpose computer, a graphical pro-
cessing unit, and/or other hardware. As with any physical
system, there are constraints as to the memory available and
the number of calculations that can be done in a given amount
of time. Embodiments might be described in mathematical
terms, but one of ordinary skill in the art, such as one familiar
with computer graphics, would understand that the math-
ematical steps are to be implemented for execution in some
sort of hardware environment. Therefore, it will be assumed
that such hardware and/or associated software or instructions
are present and the description below will not be burdened
with constant mention of same. Embodiments might be
implemented entirely in software stored on tangible, non-
transitory or transitory media or systems, such that it is elec-
tronically readable. While in places, process steps might be
described by language such as “we calculate” or “we evalu-
ate” or “we determine”, it should be apparent in some con-
texts herein that such steps are performed by computer hard-
ware and/or defined by computer hardware instructions and
not persons.

The essential task of such computer software and/or hard-
ware, in this instance is to generate images from a geometric
model or other description of a virtual scene. In such
instances, it will be assumed that the model/description
includes description of a space, a virtual camera location and
virtual camera details, objects and light sources. Also, here
we will assume some participating media, i.e., virtual media
in the space that light from the virtual light sources passes
through and interacts with. Such effects would cause some
light from the light source to be deflected from the original
path from the light source in some direction, deflected off of
some part of the media and toward the camera viewpoint. Of
course, there need not be actual light and actual reflection, but
it is often desirable that the image be generated with realism,
i.e., creating images where the effects appear to behave in a
manner similar to how light behaves and interacts with
objects in a physical space.

As explained above, simple images are easy to render, but
often that is not what is desired. Complex images might
include participating media such as fog, clouds, etc.

In many descriptions of image generators, the outputimage
is in the form of a two-dimensional (“2D”) array of pixel
values and in such cases, the software and/or hardware used to
generate those images is referred to as a renderer. There might
be image generators that generate other representations of
images, so it should be understood that unless otherwise
indicated, a renderer outputs images in a suitable form. In
some cases, the renderer renders an image or images in part,
leaving some other module, component or system to perform
additional steps on the image or images to form a completed
image or images.

As explained, a renderer takes as its input a geometric
model or some representation of the objects, lighting, effects,
etc. present in a virtual scene and derives one or more images
of that virtual scene from a camera viewpoint. As such, the
renderer is expected to have some mechanism for reading in
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that model or representation in an electronic form, store those
inputs in some accessible memory and have computing power
to make computations. The renderer will also have memory
for storing intermediate variables, program variables, as well
as storage for data structures related to lighting and the like, as
well as storage for intermediate images. Thus, it should be
understood that when the renderer is described, for example,
as having generated multiple intermediate images and aver-
aging them, it should be understood that the corresponding
computational operations are performed, e.g., a processor
reads values if pixels of the intermediate images, averages
pixels and stores a result as another intermediate image, an
accumulation image, or the final image, etc. The renderer
might also include or have access to a random number gen-
erator.

In approaches described below, an acceleration data struc-
ture is used to greatly speed up the rendering process when
camera rays can be processed in parallel, and in other situa-
tions. It may be that, for some considerations, the rays are not
processed in parallel, but they could be if desired. This par-
allelizability is provided, in part, by the use of an acceleration
data structure that doesn’t require updates from camera ray to
camera ray such that the camera rays must be processed
serially and the processing for a given camera ray might have
to wait until a data structure is updated with the results from
another camera ray’s processing.

The acceleration data structure encodes, among other
things, for a shadow map. A shadow map is an indication of
where, in the virtual space being rendered, light from a light
source can be seen and cannot be seen. In approaches
described herein, we show how a renderer can apply a simple
acceleration data structure to intersect camera rays with the
shadow map. The acceleration data structure might be orga-
nized as a 1D bounding volume hierarchy, 1D min-max mip-
maps or similar structures, such that for a given epipolar slice
of'the shadow map rectified into a row of the rectified shadow
map multiple camera rays could be processed in parallel
(rows and columns can be reversed by rotating or transposing
a 2D array of values, so rows are used in these examples
without loss of generality).

Multiple camera rays can be processed in parallel using the
acceleration data structure in that it is a static acceleration
data structure, i.e., using it to process one camera ray will not
alter the acceleration data structure so that it can be used for
processing a second camera ray without requiring the
completion, or even the start, of the processing for the other
camera ray. There might be one 1D height field, 1D min-max
mipmap or similar structure for each epipolar slice, thus
forming an array of 1D mipmaps. The regions of the image
near the epipole, if the epipole falls on the image, might be
specially handled, perhaps by brute force processing, such as
ray marching.

FIG. 1 illustrates an example scene rendered using tech-
niques described herein. In the example of FIG. 1, the scene
was renderable in real-time (55 frames per second). As can be
seen, light from a light source (outside the building) comes
through the windows and illuminates surfaces, but also illu-
minates the participating medium (the air inside the building)
and this effect is seen from the camera eye view. Without the
processing of light rays interacting with the medium, the
room would appear to have no air or extremely clear air.
Instead, in this scene, it is a much different effect to have light
interacting with the medium. Often the resulting visible volu-
metric shadows and beams of light are referred to as “god
rays” or “crepuscular rays.” Rendering these light scattering
effects is often essential for producing compelling virtual
scenes. In many examples herein, homogeneously of the



US 9,280,848 B1

7

medium distributed through the scene is assumed, but the
heterogeneous case might be dealt with as well, as explained
below.

As explained in more detail below, the renderer can use
epipolar rectification of the shadow map to transform the 2D
height field into a collection of independent 1D height fields,
one for each epipolar slice. This simplifies parallelism. In
some embodiments, the renderer uses singular value decom-
position to approximate the smoothly varying terms of the
scattering integral, avoiding an analytical solution and sup-
porting textured lights.

FIG. 2 illustrates an example of the acceleration data struc-
ture. To compute single scattering in scenes with occluders, a
depth image from the camera is generated and a shadow map
from the light is generated. After epipolar rectification of the
shadow map (rectification of the depth map is not needed, as
explained herein), each row of the shadow map is a 1D height
field. The renderer optimizes the computation of the scatter-
ing integral by using an efficient data structure (such as the 1D
min-max mipmap illustrated in FIG. 2B) over this height
field. This data structure helps compute the scattering integral
for all camera rays in parallel. Our method can render com-
plex high-quality scenes with textured lights in real-time (55
FPS).

As shown in FIG. 2, FIG. 2A illustrates a scene 20 with a
camera/eye viewpoint 22 and a point light source 24. The
objects 26, 28 in the scene block the light and thus create
shadows. An approximation to these shadows is represented
by the shadow map having shadow portions 27, 29. By reor-
ganizing the shadow map into a 1D min-max mipmap, or
similar structure, as illustrated in FI1G. 2B, the light rays then
correspond to columns in the acceleration data structure and
camera rays then correspond to rows in the acceleration data
structure. In FIG. 2B, the horizontal arrow represents a cam-
era ray, whereas the horizontal lines represent the various
minimum and maximum boundaries for depth maps for vari-
ous nodes of the binary tree. In the figure, the nodes are
referenced by the numbers 1 through 7 and a parenthetical (n)
and the corresponding min/max ranges are referenced by the
corresponding number with a parenthetical (r).

As explained herein, then a method of finding all the lit
segments for all pixels in the image can be done in parallel.
Unlike Billeter et al., the renderer can compute the lit seg-
ments with an outer loop over pixels, so a large number of
vertices do not need to be sent to the GPU and can also support
textured lights, and possibly be combined with epipolar sam-
pling for further acceleration.

Incremental integration uses epipolar rectification to
reduce scattering integration to partial sums on a rectilinear
grid and uses a partial sum tree to accelerate this computation.
While this method has good worst-case upper bounds and is
very fast on the CPU, it requires an incremental traversal of
multiple camera rays in a particular order, making it difficult
to utilize the full parallelism provided by a GPU. In contrast,
some of the approaches described herein may sacrifice worst-
case guarantees, but allow all camera rays to be processed in
parallel using only features found in simple pixel shaders. We
also do not require camera rectification, avoiding the need to
process twice as many camera rays as pixels (due to the
non-uniform sampling in polar coordinates) and reducing
aliasing. Because of rectification, only 1D min-max mipmaps
are needed, whose traversal is simple and efficient, even
where all intersections between the height field and the ray are
needed, not only the first.

Overview

Light scattering in a participating medium is responsible

for several important effects we see in the natural world. In the
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presence of occluders, computing single scattering requires
integrating the illumination scattered towards the eye along
the camera ray, modulated by the visibility towards the light
at each point. Unfortunately, incorporating volumetric shad-
ows into this integral, while maintaining real-time perfor-
mance, remains challenging.

Herein, methods and apparatus are described that may
allow for real-time computing of volumetric shadows in
single-scattering media on a graphics processing unit
(“GPU”). A method evaluates the scattering integral over the
intersections of camera rays with a shadow map, expressed as
a 2D height field. By applying epipolar rectification to the
shadow map, each camera ray only travels through a single
row of the rectified shadow map (an epipolar slice), which
allows a renderer to find the visible segments by considering
only 1D height fields. An acceleration structure (a 1D min-
max mipmap, for example) is used to allow for quickly find-
ing the lit segments for all pixels in an epipolar slice in
parallel. The simplicity of this data structure and its traversal
allows for efficient implementation using only pixel shaders
on the GPU, if needed.

At a high level, a renderer performs the following steps to
render each frame (some of the results might be reused for
later frames):

1. Render a depth map from the camera and a shadow map

from the light.

2. Perform epipolar rectification on the shadow map (de-

tailed below).

3. Compute a low-rank approximation to all but the visibil-

ity terms in the scattering integral (detailed below).

4. For each row of'the rectified shadow map, compute a 1D

min-max mipmap (detailed below).

5. For each camera ray, traverse the min-max mipmap to

find lit segments and accumulate the scattering integral.

6. If the epipole is on or near the screen, compute the

scattering near the epipole using brute force ray march-
ing.

In this process, a static min-max mipmap can be used
instead of a dynamic data structure such as a partial sum tree
used for integration, which is simpler, allows all rays to be
processed in parallel, and avoids the need for camera rectifi-
cation.

Single Scattering Formulation

In the single-scattering model, the radiance scattered
toward the eye is integrated along each camera ray, up to the
first surface. At every point on this ray, if the light source is
visible from that point, a certain fraction of that light gets
scattered towards the eye. Light also gets attenuated as it
travels from the light source to the scattering point and to the
eye. This leads to Equation 1 for the radiance, L(v), scattered
towards the eye (assumed to be the origin of the coordinate
system used for these equations) over a camera ray whose
direction is v, where d is the distance to the first occluder
along the ray, o, is the scattering coefficient, o,=0 +0, is the
extinction coefficient, V(sv)=1 when the point sv can see the
light and V(sv)=0 if it is in shadow, L, (sv) is the radiance
incident to point sv assuming no occlusion, and p(0) is the
scattering phase function, with 6 being the angle between v
and the light direction.

L)% " V(sv)o,p(@)L,,(sv)ds, (Eqn. 1)

For the simplest case of a uniform directional light source
with no extinction along light rays, L, (sv) is a constant. For
an isotropic point light source at x, Equation 2 holds, where |
is the light intensity. For a textured light source, the intensity
1 is a function of sv projected to light coordinates.
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Lin(sv) = o

s d(sv) = |lx —svll

Rectification and Low-Rank Approximation

Epipolar rectification is an assignment of coordinates (c, 3,
y) to every world space point p such that camera rays are
indexed by (a, B) and light rays are indexed by (a, y). The
world space is partitioned into epipolar slices, planes that
contain the eye and that are parallel to the light direction, and
the o coordinate specifies p’s slice. The coordinate f§ specifies
the view ray within the slice. For directional lights, this is the
angle to the light direction, and for point lights this is the angle
between the view ray and the direction from the eye to the
light source. They coordinate specifies the light ray within the
slice, measured as the distance to the eye for a directional light
source or the angle to the eye for a point light source.

This is illustrated in FIG. 3, showing an example epipolar
coordinate system for a directional light (FIG. 3A) and a point
light (FIG. 3B) and epipolar coordinates within an epipolar
slice for each. The a coordinate determines the epipolar slice.
Each pixel of the shadow map corresponds to a point in world
space.

FIG. 4 illustrates an example shadow map with an epipolar
coordinate system overlaid thereon. FIG. 5 illustrates an
example rectified shadow map corresponding to the shadow
map of FIG. 4. This turns epipolar slices (radial lines ema-
nating from the epipole shown in FIG. 4) into rows of the
rectified shadow map shown in FIG. 5. For directional light,
the radial distance from the epipole is the coordinate y, which
specifies a column within each slice. The value of each pixel
in the rectified shadow map gives the  coordinate of the
occluder. In the rectified shadow map, rows are indexed by a.,
columns by v, and the element stored at (., v) is the § coor-
dinate of the camera ray at which that light ray terminates.
Because camera rays can be processed in any particular order,
rectification of the camera depth map is not needed.

Using a change of variables, the scattering integral (Equa-
tion 1) of an untextured light may be written in epipolar
coordinates as shown by Equation 3, where D(a, f3) is the y
coordinate of the light ray at which the camera ray (a, p) is
blocked.

D(a,5) d (Eqn. 3)
L. p) = f &SIV G, By pUB. (B 1) oy

Except for the visibility component, the integrand only
depends on f§ and y, not a.. Thus, the scattering integral can be
simplified as shown in Equation 4, where I has all of the other
terms baked in.

L) PP YL pIBydy

The values for the integral of I(j3, y) can be precomputed,
but that would require approximating the integral once for
each P, which would be expensive. Instead, the renderer can
compute this taking into account that all terms of I vary
smoothly and thus approximates I(,v) as =~ B,(B)T,(y) fora
small N. The renderer can compute this approximation by
sampling [ in a 64-by-64 grid, take the SVD (on the CPU, as
this does not need to be done more than once per frame), and
using the singular vectors associated with the top N singular
values. In one embodiment, N=4, but other values of N can be
used. This results in Equation 5.

(Eqn. 4)
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N D(@,8) (Eqn. 5)
e~y (B; B fo Vie, B (y)dy]

Approximating the integral as a Riemann sum, and using
the structure of the visibility function results in Equation 6,
where S[c, ] is the rectified shadow map. Using this process,
the rendered can render by only having to compute N prefix
sum tables instead of one for each f.

N (Eqn. 6)
La, ﬁ)zZ[Bi(ﬁ) > r;(y)Ay]
7 y<D(a.p)
Sleyl>B

Min-Max Mipmap Construction and Traversal

Note how the actual integral, i.e., the inner sum of Equation
6 is evaluated.

Incremental integration uses interdependence between
camera rays within a slice, maintaining 2,V (8, Y)I'(y)Ay ina
partial sum tree for each slice. In contrast, the renderer here
can process each camera ray independently, which enables
massive parallelism. For each ray, the renderer determined
the segments (y_, v,) for which S[a, y]>, i.e., the lit regions
of that camera ray. It can then use a table of prefix sums of f,
to compute the integral over the segments. The use of a 1D
min-max mipmap or similar data structure to accelerate find-
ing the lit segments greatly improves the speed.

FIG. 6 illustrates a min-max mipmayp in specific detail and
an example camera ray. This corresponds to the shadow map
of FIG. 2B, with the min and max values for nodes provided
with each node. Each row of the rectified shadow map, S,
represents a 1D height field in an epipolar slice and the ren-
derer can quickly find the intersection of that height field with
a camera ray as illustrated. The acceleration data structure
might include a complete binary tree on each row with every
node of this tree storing the minimum and maximum values of
S below that node. These trees can be calculated from (log, d)
ping-pong passes, each of which computes a level from the
level below, where d is the number of light rays, i.e., the
resolution of y. The two buffers are then coalesced into a
single one with each row laid out level by level (perhaps using
Ahnentafel indexing), starting with the root at index 1.

FIG. 7 illustrates a process of traversing the min-max mip-
map for an example camera ray shown in FIG. 6. To compute
the scattering integral for any view ray in this epipolar slice,
the renderer traverses the tree by thresholding the min-max
mipmap with the [} value of the view (camera) ray, illustrated
by the path. In FIG. 7, nodes entirely in shadow are colored
black, nodes entirely lit are colored white, and nodes contain-
ing visibility boundaries are grey. After the tree is con-
structed, for each camera ray, the renderer can traverse it
using a recursive process.

Traversal can be implemented in a pixel shader without
recursion. FI1G. 8 provides an example process for this, in the
form of pseudocode. By the time this function is called,
min[node, o] and max[node, o] contain the min-max mip-
map, and I',,,, stores the prefix-sums of I'. The function
RANGE returns the range of y coordinates that are below the
given tree node.

Given a camera ray at “height” 3, and starting from the root
of'the tree, each tree node can be processed in turn. If {3 is less
than the minimum for a node, that node is completely lit and
the integral over the range of that node is accumulated for that
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cameraray to the output. If f} is greater than the maximum, the
node is completely shadowed and can be skipped. Otherwise,
the renderer recursively processes the two child nodes. To
avoid the recursion, when a node is processed, instead of
popping the call stack, the renderer can move to the next node,
which is either the node at the next index location or its
ancestor that is a right child. Thus the path followed in FIG. 7.
Textured Lights

To simulate an effect like stained-glass windows, it is use-

12

derer might do both the rectification and the prefix sum com-
putation at the lower resolution and access the resulting tex-
ture (line 11 of FIG. 8) using hardware linear interpolation.
The error this introduces is not noticeable.

Results and Evaluation

In one implementation, the renderer uses only those fea-
tures in DirectX 9. Tests were done on an Intel Core 7™ 960
(3.2 GHz) with an NVIDIA™ GeForce™ 480 GTX GPU at

ful to treat the light as having a texture. A light texture map 10 1280x960 resolution. Four scenes were used for the tests: a
can be rectified, using some of the same techniques as used for church scene (StENTK), a church with a textured lighF (SmENT-
rectifying a shadow map. One result of rectification is a tex- ~ KTEX), a forest scene (TREES?’ and an open mountain scene
ture term for various values of o and vy, represented here as (TEWW)~ The number of epipolar slices US?d and incremen-
T(ct, v). The texture term T(c, v) gets multiplied into the tal integration was scene-dependent, sufficient to guarantee
integrand. Because T(c, ) need not be smoothly varying, 15 that each camera ray is within halfa pixel of a slice. In the test,
perhaps it is not baked into I, instead leaving it as a separate ~ an isotropic phase function p=mn/4 was used.
term. Equation 6 then becomes Equation 7. Table 1 shows how long various stages of the method take
for those scenes with a 4Kx4K shadow map. Table 1 shows a
2 breakdown of the timing of the method among various stages
ul (Eqn.7) for a single frame, as well as the timing of incremental inte-
Lo, y) Z Bi(p) Z Lin)T(e. yAy gration (Baran et al. method) and brute force ray marching at
7 o equal quality. The total times are for scattering only and do
' not include the time for rendering the shadow map, the cam-
55 ora depth map, and direct lighting, as these operations are part
Note that a similar change could be made to some of the of the standard pipeline and present for all of the methods.
other equations, such as Equation 3 or Equation 4 if the When comparing to incremental integration, the roughly 10
approximation of I is not used. ms CUDA/Direct3D interop overhead is omitted. The
Instead of precomputing prefix sums of I',(y), the renderer shadow map resolution is 4096x4096. All times are in milli-
precomputes prefix sums of I',(y)T(a, v), which is more work seconds.
TABLE 1
Tested Method
Shadow Brute Total
Map & Shadow Light Force Total Scattering
Direct Map Texture Mipmap near Total Scattering  (Brute
Scene Lighting Rectification Precomputation Construction Integration Epipole Scattering (Baran) Force)
Sibenik 3.6 1.3 2.5 6.8 0.3 11 31 (2.8x) 113 (10x)
Sibeniktex 3.7 1.4 1.2 2.5 12.2 0.3 18 — 144 (8x)
Trees 7.3 1.3 2.6 19.8 — 24 43 (1.8x) 286 (12x)
Terrain 11.2 1.4 — 2.5 2.6 — 7 29 (4.1x) 43 (6x)

because it needs to be done per a.. Nonetheless, it is still
feasible and can be done in O(log, t) ping-pong passes, where
t is the y-resolution of the rectified light texture.

Example Implementations

An example renderer implementation might operate as
described above, using software and/or hardware. Minor opti-
mizations might be provided over the method presented
above. For example, to avoid a potentially expensive while
loop in the shader for going up the tree, the renderer could go
up at most one level in its traversal, which would correspond
(in FIG. 8) to replacing the while on line 14 with an if.

The integral over a single lit segment of a ray can be
computed using multiple tree nodes. To avoid adding and
subtracting I',,,,, terms that just cancel out, the renderer can
delay a update to the integral (line 11 in the pseudocode of
FIG. 8) until the next unlit tree node is encountered or the end
of the traversal. This optimization is especially useful for
colored textured light sources because the renderer might
need to access 24 floats (three color channels by four singular
vectors for the start and end) instead of eight.

In tests using textured light sources, a light texture whose
resolution is lower than the shadow map (512x512 in
examples) was used. To achieve good performance, the ren-

45

50

55

The comparison process is courtesy of Markus Billeter and
colleagues. That process was slightly sped up (roughly by
10%) by using a triangle strip instead of individual triangles
to render the light volume. However, this implementation
does not support directional lights and to compare with that
method, the test was with a far-away spotlight in the test
scenes.

Table 2 shows performance relative to that of Billeter et al.
as the shadow map resolution varies from 1K to 4K. The
method described herein is faster (except at 1K shadow-map
resolution on TErRrRAW) and scales better to high-resolution
shadow maps. Note that for complex scenes, even a 2K
shadow map resolution is insufficient and can lead to tempo-
ral aliasing.

Computing time for scattering is compared between the
tested method and the method of Billeter et al. [Billiter2010]
on versions of test scenes with a spotlight instead of a direc-
tional light. The timings for each scene are for three shadow
map resolutions and are given in milliseconds. For the terrain
scene at 4K resolution, the adaptive version of Billeteret al.’s
method was used because it was 1.8 ms faster than the non-
adaptive version.
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TABLE 2
Sibenik Trees Terrain
1K 2K 4K 1K 2K 4K 1K 2K 4K
Tested method 5.6 8.6 125 192 272 382 5.3 6.7 9.0
[Billeter et al. 2010] 72 114 260 37.2 594 932 3.7 9.2 281
Speedup 1.3x  1.3x 2.1x 1.9x  2.2x 2.4x 0.7  14x  3.1x
10

Complexity Comparison

It is instructive to understand the number of operations the
described methods perform, compared to other approaches.

Let s be the number of'slices, p be the number of pixels, and
d be the number of depth samples (the resolution of the y
variable, equal to the shadow map resolution in our experi-
ments). Let 1 be the number of contiguous lit segments—so
for a scene with no objects, I=p, and for a scene like TREES,
1>>p. LetI' be the number of contiguous lit segments up to the
first blocker (i.e., whose integral is actually relevant)}—sop
p=l'=l.

Using methods described herein, there are O(l' log d)
operations performed, of which precisely 21' are accesses to
T". The method of Billeter et al. [Billiter2010] performs 6(1)
operations, of which 21 are computations of the analytic scat-
tering model. They avoid the (log d) tree overhead, but have to
process segments that do not contribute to the scattering inte-
gral to avoid z-fighting when rendering the light volume.
Having to process invisible segments and large numbers of
polygons for high-resolution shadow maps offsets their
advantage from not having to use trees to find light-shadow
transitions. For incremental integration, the complexity is
O((p+sd) log d), but while p+sd is almost always much
smaller than I', that method has a large working set and
relatively poor parallelism. This makes incremental integra-
tion slower on the GPU even on scenes with very large 1', like
TReEs.

Hardware Example

FIG. 9 is a block diagram of hardware that might be used to
implement a renderer. The renderer can use a dedicated com-
puter system that only renders, but might also be part of a
computer system that performs other actions, such as execut-
ing a real-time game or other experience with rendering
images being one part of the operation.

Rendering system 800 is illustrated including a processing
unit 820 coupled to one or more display devices 810, which
might be used to display the intermediate images or accumu-
lated images or final images, as well as allow for interactive
specification of scene elements and/or rendering parameters.
A variety of user input devices, 830 and 840, may be provided
as inputs. In one embodiment, a data interface 850 may also
be provided.

In various embodiments, user input device 830 includes
wired connections such as a computer-type keyboard, a com-
puter mouse, a trackball, a track pad, a joystick, drawing
tablet, microphone, and the like; and user input device 840
includes wireless connections such as wireless remote con-
trols, wireless keyboards, wireless mice, and the like. In the
various embodiments, user input devices 830-840 typically
allow a user to select objects, icons, text and the like that
graphically appear on a display device (e.g., 810) via a com-
mand such as a click of a button or the like. Other embodi-
ments of user input devices include front-panel buttons on
processing unit 820.

Embodiments of data interfaces 850 typically include an
Ethernet card, a modem (telephone, satellite, cable, ISDN),
(asynchronous) digital subscriber line (DSL) unit, FireWire
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interface, USB interface, and the like. In various embodi-
ments, data interfaces 850 may be coupled to a computer
network, to a FireWire bus, a satellite cable connection, an
optical cable, a wired-cable connection, or the like.

Processing unit 820 might include one or more CPU and
one or more GPU. In various embodiments, processing unit
820 may include familiar computer-type components such as
a processor 860, and memory storage devices, such as a
random access memory (RAM) 870, disk drives 880, and
system bus 890 interconnecting the above components. The
CPU(s) and or GPU(s) can execute instructions representa-
tive of process steps described herein.

RAM 870 and hard-disk drive 880 are examples of tangible
media configured to store data such as images, scene data,
instructions and the like. Other types of tangible media
includes removable hard disks, optical storage media such as
CD-ROMS, DVD-ROMS, and bar codes, semiconductor
memories such as flash memories, read-only-memories
(ROMS), battery-backed volatile memories, networked stor-
age devices, and the like (825).

FIG. 9 is representative of a processing unit 820 capable of
rendering or otherwise generating images. It will be readily
apparent to one of ordinary skill in the art that many other
hardware and software configurations are suitable for use
with embodiments of the present invention described herein.
For example, processing unit 820 may be a personal com-
puter, handheld computer, server farm, or similar hardware.
In still other embodiments, the techniques described below
may be implemented upon a chip or an auxiliary processing
board.

Additional Variations

Like several other methods for speeding up volumetric
shadows, a homogeneous isotropic medium is assumed. The
isotropy assumption allows for computing the SVD only once
per frame. For an anisotropic medium, I becomes a function
of'a. Itis a smooth function of a, so a renderer might compute
the SVD at a few values of a and interpolate between the
results. A similar method may work for a very smoothly
varying nonhomogeneous medium. Note that an anisotropic
medium is not the same thing as an anisotropic phase func-
tion, which is only a function of § and y and which simpler
methods herein may support.

Reducing aliasing, both spatial and temporal, is a challenge
for all methods based on shadow maps. Aliasing in the
shadow map leads to aliasing in the scattering integral. If in
the next frame, a polygon edge is rasterized differently, that
may cause a sudden jump in the calculated inscatter that
manifests itself as a temporal artifact. A high-resolution
shadow map can keep the aliasing to a minimum. In addition,
while some method herein can introduce a little extra aliasing
when rectifying the shadow map and when a camera ray is
“quantized” to a specific epipolar slice. This aliasing is rela-
tively minor, but might be seen on close examination. How-
ever, the aliasing in incremental integration is strictly greater:
additional aliasing is introduced by the camera rectification
and unrectification.
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CONCLUSION

As explained herein, an acceleration data structure and
methods of using it can render complex illumination in par-
ticipating media and do it in parallel very fast.

The process can be run for real-time rendering volumetric
shadows in single-scattering media. Overall, we achieve a
significant speedup or better quality compared to other
approaches. A simple acceleration data structure can be used
to intersect camera rays with a shadow map, which is treated
as a height field and using epipolar rectification of the shadow
mayp, reduces the process from that of intersecting with a 2D
height field to that of intersecting with 1D height fields. The
1D min-max mipmap can be used to find the lit segments for
all pixels in the image. This data structure sacrifices worst-
case guarantees but its simplicity allows for better exploita-
tion of parallel processing capabilities of a GPU by process-
ing all camera rays simultaneously. The methods scale well to
large shadow map resolutions and, due to good use of the
GPU, even to scenarios with highly complex visibility func-
tions. The resulting algorithm is simple to implement and can
be done using requires features available on current game
consoles.

Further embodiments can be envisioned to one of ordinary
skill in the art after reading the attached documents. For
example, light rays can be sampled in various manners. In
other embodiments, combinations or sub-combinations of the
above disclosed embodiments can be advantageously made.
The block diagrams of the architecture and flow charts are
grouped for ease of understanding. However it should be
understood that combinations of blocks, additions of new
blocks, re-arrangement of blocks, and the like are contem-
plated in alternative embodiments of the present invention.

The specification and drawings are, accordingly, to be
regarded in an illustrative rather than a restrictive sense. It
will, however, be evident that various modifications and
changes may be made thereunto without departing from the
broader spirit and scope of the application as set forth in the
claims.

What is claimed is:

1. A computer-implemented method for rendering a scene
from a geometric model of elements in the scene, lighting and
a participating volumetric medium, wherein the volumetric
medium and lighting of such volumetric medium and scene is
represented by electronically readable representative data,
and rendering corresponds to generating pixel values from an
image representing a view of the scene from a camera view-
point, the method comprising:

generating a rectified shadow map representing visibility

from a light source in the scene that uses an epipolar
rectification, wherein rows of the rectified shadow map
correspond to epipolar slices of a corresponding shadow
map;

generating an approximation to visibility terms in a scat-

tering integral;

for each of a plurality of rows in the rectified shadow map,

computing a static acceleration data structure, wherein
the static acceleration data structure is static in that for at
least some of camera rays, the static acceleration data
structure is unchanged by processing for those at least
some camera rays;

for each of a plurality of camera rays, traversing the static

acceleration data structure to find lit segments;

for each of at least some of the plurality of camera rays,

accumulating values for the scattering integral for that

10

15

20

25

30

35

40

45

50

55

60

65

16

camera ray as calculated for lit segments, wherein the
accumulated values for the scattering integral include a
texture term;

generating a rectified light texture map and precomputing

prefix sums that depend on the texture term for each of
the camera rays independent of the other of the camera
rays, wherein the texture term varies as a function of the
epipolar slice; and

generating rendered pixel values that take into account

accumulated values for the scattering integral for the
plurality of camera rays.

2. The computer-implemented method of claim 1, further
comprising computing scattering near an epipole of the rec-
tified shadow map using brute force ray marching when the
epipole is on or near a view plane region in the scene corre-
sponding to a screen corresponding to the image being ren-
dered.

3. The computer-implemented method of claim 1, further
comprising:

allocating computation for a plurality of the camera rays to

a plurality of parallel operators; and

providing access to the static acceleration data structure
to each of the plurality of parallel operators, thereby
allowing for calculations for at least two distinct cam-
era rays to proceed independently.

4. The computer-implemented method of claim 1, further
comprising repeating rectified shadow map generation for a
second and subsequent light source.

5. The computer-implemented method of claim 1, further
comprising:

generating a depth map representing visibility from the

camera viewpoint; and

using the depth map when accumulating values for the

scattering integral.

6. The computer-implemented method of claim 1, wherein
generating a rectified shadow map comprises:

generating the corresponding shadow map representing the

visibility from the light source in the scene; and
converting the corresponding shadow map using epipolar
rectification to form the rectified shadow map.

7. The computer-implemented method of claim 1, wherein
the static acceleration data structure is a binary 1D tree of 1D
structures.

8. The computer-implemented method of claim 1, wherein
the static acceleration data structure is a plurality of 1D min-
max mipmaps, with a 1D min-max mipmap for each of a
plurality of rows of the rectified shadow map.

9. The computer-implemented method of claim 1, wherein
at least one step is performed using a graphical processing
unit.

10. The computer-implemented method of claim 1,
wherein accumulating values for the scattering integral
includes approximating portions of the scattering integral
using singular vectors of a singular value decomposition.

11. A rendering system for rendering a scene from a geo-
metric model of elements in the scene, lighting and a partici-
pating volumetric medium, wherein the volumetric medium
and lighting of such volumetric medium and scene is repre-
sented by electronically readable representative data, and
rendering corresponds to generating pixel values from an
image representing a view of the scene from a camera view-
point, comprising:

one or more processors associated with one or more com-

puter systems; and

a memory configured to store a set of instructions to be

executed by the one or more processors, the set of
instructions comprising:
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instructions for generating a rectified shadow map repre-
senting visibility from a light source in the scene that
uses an epipolar rectification, wherein rows of the recti-
fied shadow map correspond to epipolar slices of a cor-
responding shadow map;

instructions for generating an approximation to visibility

terms in a scattering integral;

instructions for computing, for each of a plurality of rows

in the rectified shadow map, a static acceleration data
structure, wherein the static acceleration data structure
is static in that for at least some of camera rays, the static
acceleration data structure is unchanged by processing
for those at least some camera rays;

instructions for traversing, for each of a plurality of camera

rays, the static acceleration data structure to find lit
segments;

instructions for accumulating, for each of at least some of

the plurality of camera rays, values for the scattering
integral for that camera ray as calculated for lit seg-
ments, wherein the accumulated values for the scattering
integral include a texture term;

instructions for generating a rectified light texture map and

for precomputing prefix sums that depend on the texture
term for each of the camera rays independent of the other
of the camera rays, wherein the texture term varies as a
function of the epipolar slice; and

instructions for generating rendered pixel values that take

into account accumulated values for the scattering inte-
gral for the plurality of camera rays.

12. The rendering system of claim 11, further comprising
instructions for computing scattering near an epipole of the
rectified shadow map using brute force ray marching when
the epipole is on or near a view plane region in the scene
corresponding to a screen corresponding to the image being
rendered.

13. The rendering system of claim 11, further comprising:

storage for an acceleration data structure representing the

1D min-max mipmap independent of camera ray;

a graphical processing unit capable of at least two parallel

operations;

instructions for allocating computation for a plurality of

the camera rays to a plurality of GPU parallel opera-
tions; and

instructions for providing access to the acceleration data

structure to each of the plurality of GPU parallel opera-
tions, thereby allowing for calculations for at least two
distinct camera rays to proceed independently.

14. The rendering system of claim 11, further comprising
instructions for repeating rectified shadow map generation
for a second and subsequent light source.

15. The rendering system of claim 11, further comprising
instructions for generating a depth map representing visibility
from the camera viewpoint, such that the rendering system is
configured for using the depth map when accumulating val-
ues for the scattering integral.

16. The rendering system of claim 11, wherein generating
a rectified shadow map comprises:

instructions for generating the corresponding shadow map

representing the visibility from the light source in the
scene; and

instructions for converting the corresponding shadow map

using epipolar rectification to form the rectified shadow
map.

17. The rendering system of claim 11, wherein the static
acceleration data structure is a binary 1D tree of 1D struc-
tures.
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18. The rendering system of claim 11, wherein the static
acceleration data structure is a plurality of 1D min-max mip-
maps, with a 1D min-max mipmap for each of a plurality of
rows of the rectified shadow map.
19. The rendering system of claim 11, further comprising a
graphical processing unit for executing instructions of the
rendering system.
20. The rendering system of claim 11, wherein instructions
for accumulating values for the scattering integral include
instructions for approximating portions of the scattering inte-
gral using singular vectors of a singular value decomposition
and the rendering system further comprises storage for prefix
sum tables.
21. A non-transitory computer-readable medium storing
computer-executable program code for rendering a scene,
wherein rendering corresponds to generating pixel values
from an image representing a view ofthe scene from a camera
viewpoint, the non-transitory computer-readable medium
comprising:
code for reading a data structure storing a geometric model
of elements in the scene, lighting and a participating
volumetric medium, wherein the volumetric medium
and lighting of such volumetric medium and scene is
represented by electronically readable representative
data;
code for generating a rectified shadow map representing
visibility from a light source in the scene that uses an
epipolar rectification, wherein rows of the rectified
shadow map correspond to epipolar slices of a corre-
sponding shadow map;
code for generating an approximation to visibility terms in
a scattering integral;

code for computing, for each of a plurality of rows in the
rectified shadow map, a static acceleration data struc-
ture, wherein the static acceleration data structure is
static in that for at least some of camera rays, the static
acceleration data structure is unchanged by processing
for those at least some camera rays;
code for traversing, for each of a plurality of camera rays,
the static acceleration data structure to find lit segments;

code for accumulating, for each of at least some of the
plurality of camera rays, values for the scattering inte-
gral for that camera ray as calculated for lit segments,
wherein the accumulated values for the scattering inte-
gral includes handling of a texture term,

code for generating a rectified light texture map and for

precomputing prefix sums that depend on the texture
term for each of the camera rays independent of the other
of the camera rays, wherein the texture term varies as a
function of the epipolar slice; and

code for generating rendered pixel values that take into

account accumulated values for the scattering integral
for the plurality of camera rays.

22. The non-transitory computer-readable medium of
claim 21, further comprising code for computing scattering
near an epipole of the rectified shadow map using brute force
ray marching when the epipole is on or near a view plane
region in the scene corresponding to a screen corresponding
to the image being rendered.

23. The non-transitory computer-readable medium of
claim 21, further comprising:

code for allocating computation for a plurality of the cam-

era rays to a plurality of parallel operators; and

code for providing access to the static acceleration data

structure to each of the plurality of parallel operators,
thereby allowing for calculations for at least two distinct
camera rays to proceed independently.
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24. The non-transitory computer-readable medium of
claim 21, further comprising code for repeating rectified
shadow map generation for a second and subsequent light
source.

25. The non-transitory computer-readable medium of
claim 21, further comprising:

code for generating a depth map representing visibility

from the camera viewpoint; and

code for accumulating values for the scattering integral

using the depth map.

26. The non-transitory computer-readable medium of
claim 21, wherein the code for generating a rectified shadow
map comprises:

code for generating the corresponding shadow map repre-

senting the visibility from the light source in the scene;
and

code for converting the corresponding shadow map using

epipolar rectification to form the rectified shadow map.

27. The non-transitory computer-readable medium of
claim 21, configured to process the static acceleration data
structure as a binary 1D tree of 1D structures.
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28. The non-transitory computer-readable medium of
claim 21, configured to process the static acceleration data
structure as a plurality of 1D min-max mipmaps, with a 1D
min-max mipmap for each of a plurality of rows of the recti-
fied shadow map.

29. The non-transitory computer-readable medium of
claim 21, wherein at least some of the code is written for a
graphical processing unit.

30. The non-transitory computer-readable medium of
claim 21, wherein code for accumulating values for the scat-
tering integral includes code for approximating portions of
the scattering integral using singular vectors of a singular
value decomposition.

31. The computer-implemented method of claim 1, further
comprising generating a plurality of 1-D heightfields from the
rectified shadow map.

32. The computer-implemented method of claim 31,
wherein the acceleration structure is computed from the 1-D
heightfield.



